Extended Conscriptions Algebraically
نویسنده
چکیده
Conscriptions are a model of sequential computations with assumption/commitment specifications in which assumptions can refer to final states, not just to initial states. We show that they instantiate existing algebras for iteration and infinite computations. We use these algebras to derive an approximation order for conscriptions and one for extended conscriptions, which additionally represent aborting executions. We give a new computation model which generalises extended conscriptions and apply the algebraic techniques for a unified treatment.
منابع مشابه
$(m,n)$-algebraically compactness and $(m,n)$-pure injectivity
In this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. Moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
متن کاملAlgebraically Extended 2d Image Representation
This paper presents an algebraically extended 2D image representation. Combining methods of tensor algebra, monogenic signal and quadrature filter, this novel image representation can be derived as the monogenic extension of a curvature tensor. From it, the monogenic signal and the monogenic curvature signal for modeling intrinsically one and two dimensional (i1D/i2D) structures are obtained as...
متن کاملON THE HYPERBOLICITY OF SURFACES OF GENERAL TYPE WITH SMALL c1
Surfaces of general type with positive second Segre number s2 := c1 − c2 > 0 are known by results of Bogomolov to be algebraically quasihyperbolic i.e. with finitely many rational and elliptic curves. These results were extended by McQuillan in his proof of the Green-Griffiths conjecture for entire curves on such surfaces. In this work, we study hyperbolic properties of minimal surfaces of gene...
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملAlgebraically Closed and Existentially Closed Substructures in Categorical Context
We investigate categorical versions of algebraically closed (= pure) embeddings, existentially closed embeddings, and the like, in the context of locally presentable categories. The definitions of S. Fakir [Fa, 75], as well as some of his results, are revisited and extended. Related preservation theorems are obtained, and a new proof of the main result of Rosický, Adámek and Borceux ([RAB, 02])...
متن کامل